

info@matronic.se 08-556 291 00 matronic.se

Koki no-clean LEAD FREE solder paste

Multi-feature Lead-free Solder Paste For Fine Pattern Application \$3X70-HF1200

Product Information

Maximizes Voiding & Wetting Performances with "Dual 2-Step" Enhancement Technology

Disclaimer

This Product Information contains product performance assessed strictly according to our own test procedures and is not the guaranteed result at end-users. Please conduct thorough process optimization before mass production application.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Feature

- Solder alloy composition: Sn3.0Ag0.5Cu
- Exhibits excellent print quality response with >1hour stencil idle time
- Powerful wetting as good as Halogen containing solder paste
- Succeeded to drastically mitigate flux splattering
- Ensures good meltability at smaller components in Air / N₂ reflow (e.g. 0402 metric size chip component)
- Realizes low voiding with BTCs (e.g., Pw.Tr., QFN, LGA) and BGA
- Comply with Halogen Free standard (CI+Br = 0ppm): BS EN14582
 No artificial addition of any halogen element
- Flux type: ROL0 (CI+Br+I+F = <0.05% / IPC J-STD-004B and 004C, D)
- RoHS, REACH compliant product

Feature - Flux Gas Discharge Effect

Contents
Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

The technology designed to reduce voids by rapidly discharging flux through the **Active Coagulation Effect** in the first step.

For the second step, the Extended Active Outflow Effect continues to discharge any remaining voids, realizing the lowest void performance ever achieved.

■ Step-1 Active Coagulation Effect

The 2-step

Flux Gas

Discharge Effect

As solder powder melts, liquefied flux is designed to simultaneously enhance its coagulation and rapidly evacuate from the molten solder.

■ Step-2 Active Outflow Effect

After the Step-1 process, an 'Outflow' effect actively continues to discharge the liquefied flux and flux gas while the solder is in a molten state.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Feature – Activation Boost Effect

The 2-step
Activation
Boost Effect

This begins with **Activation Stabilizer technology**, which prevents premature chemical reactions during storage and transportation by stabilizing the activator system's reactivity.

Upon exposure to reflow heating, the stabilizer is released, unlocking maximum activation power.

For the second step, the newly formulated high-temperature-resistant activator, with superior activation in high-temperature zones, ensures robust and powerful solder meltability and wetting, despite being halogen-free.

This breakthrough significantly enhances the flexibility of reflow profile design, providing a broad process window for a wide range of applications.

■ Step-1 Activation Stabilizer

The newly designed activator system inhibits the chemical reaction with solder during storage and even during the pre-heating stage and exerts maximum activation strength during the time above liquidus temperature.

■ Step-2 High Temperature Activator

High temp. resistant activator gets activated and protect solder particles and maximizes wetting performance.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Specification

Purpose		Printing	
Product Name		S3X70-HF1200	
Alloy Property	Alloy Composition (%)	Sn 3.0Ag 0.5Cu	
	Melting Point (°C)	217 – 219	
	Powder Shape	Spherical	
	Grain Size (µm)	10 – 25	
Flux Property	Halide Content (%)	0	
	Flux type*1	ROL0	
Solder Paste Property	Flux Content (%)	12.5 ±1.0	
	Viscosity *2 (Pa.s)	190 ± 30	
	Copper Plate Corrosion*3	Passed	
	Tack Time	≥ 72 hours	
	Shelf Life (below 10°C)	6 months	

*1. Flux Designation: In accordance with IPC J-STD-004B, 004C, 004D *2. Viscosity: Measured by Malcom viscometer at 10 rpm at 25°C.

*3. Copper Plate Corrosion: In accordance with IPC-TM650-2.6.15

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Printability - Continual printing

Test Condition

Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal, 55° angle
 Stencil: 0.08 mm thick, laser

• Print speed: 40 mm/sec

• Atmosphere: 24~26°C (40~60%RH)

• Pattern: 0.175 mm dia. CSP, 0.4 mm pitch QFP

Area ratio = Aperture area
Aperture wall area

Initial 10 prints

10 prints after 200 strokes

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Printability - Intermittent printing

Test Condition

Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal, 55° angle
 Stencil: 0.08 mm thick, laser

• Print speed: 40 mm/sec

• Atmosphere: 24~26°C (40~60%RH)

• Pattern: 0.175 mm dia. CSP, 0.4 mm pitch QFP

Area ratio = Aperture area
Aperture wall area

Initial 10 prints

(mm)

1st print after 60min. pause

➤ Consistent paste transfer volume from the initial paste print even after 60min. pause even with area ratio ≥0.55.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Viscosity stability - During continual paste printing

Test condition

Print (knead) solder paste on the sealed-up stencil continually for 24 hours to observe viscosity variation.

• Squeegee: Metal blades

• Squeegee angle: 55°

Squeegee speed: 20 mm/sec.Print stroke: 300 mm

• Printing environment: 24~26°C, 40~60%RH

> Activator stability technology ensures minimal variation of rheology (viscosity & thixotropy) in continual printing.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability – Fine pattern (Air atmosphere)

Test condition

Material: Glass epoxy FR-4
 Surface finish: OSP, ImSn, ImAg, ENIG

0603chip: 100% Sn platedStencil thickness: 0.08 mm (laser of the control of the

Stencil thickness: 0.08 mm (laser cut)
Pad size: 0.175 mm dia.,

• 0402 metric chip pattern

• Stencil aperture: 100% aperture opening to pad

• Heat source: Hot air convection

• Atmosphere: Air

> Regardless of the type of surface finish, the solder coalesced completely and caused no unmolten solder particles.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability – Fine pattern (N₂ atmosphere)

Test condition

Material: Glass epoxy FR-4Surface finish: OSP, ImSn, ImAg, ENIG

0603chip:
 100% Sn plated

• Stencil thickness: 0.08 mm (laser cut)

• Pad size: 0.175 mm dia.,

0402 metric chip pattern

• Stencil aperture: 100% aperture opening to pad

Heat source: Hot air convection
 Atmosphere: N2 (O2: ≤ 5,000 ppm)

> Regardless of the type of surface finish, the solder coalesced completely and caused no unmolten solder particles.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Voiding (Air atmosphere)

Test condition

• Material: Glass epoxy FR-4

Surface finish: OSP, ImSn, ImAg, ENIG
Stencil thickness: 0.08 mm (laser cut)

• Stencil aperture: 100% aperture opening to pad

• Component:

100% Sn plated - PwTr, QFN

SAC305 - BGA

• Heat source: Hot air convection

• Atmosphere: Air

• Reflow profile: See "Meltability - Fine pattern"

> Consistently low voiding is achieved with each type of component and surface finish.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Voiding (N₂ atmosphere)

Test condition

• Material: Glass epoxy FR-4

Surface finish: OSP, ImSn, ImAg, ENIG
 Stencil thickness: 0.08 mm (laser cut)

• Stencil aperture: 100% aperture opening to pad

Component:

100% Sn plated - PwTr, QFN

SAC305 - BGA

Heat source: Hot air convection
Atmosphere: N2 (O2: <5,000 ppm)

• Reflow profile: See "Meltability - Fine pattern"

> Consistently low voiding is achieved with each type of component and surface finish.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Flux splattering

Test condition

Material: Phosphorous deoxidized copper (C1220)

• Stencil: 0.2 mm thickness, 6.5 mm diameter

• No. of specimens: n=

• Reflow profile: See "Meltability - Fine pattern"

CHALLENGING NEW TECHNOLOGIES

➤ S3X70-HF1200 resulted in very few flux splatter while conventional solder paste splattered in high amounts.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Electrical reliability - Electro-chemical Migration (ECM)

Test condition

• Test standard: IPC TM-650 2.6.14.1

Test coupon: IPC-B-25Surface finish: OSP

• Chamber condition: 65°C / 88.5%RH

Voltage: Applied 10V / measurement 100V

Reflow profile:

Conformal coating:

Hot air convection in air atmosphere

See "Meltability - Fine pattern"

A) Acrylic type

B) Polyolefin type

C) Silicone type

$$IR_{avg} = 10^{\left[\frac{1}{N}\sum_{i}^{N}\log |R_{i}|\right]}$$

N = number of test points (10 minimum),

IR_i = individual insulation resistance measurements

Coupon	IR _{avg}	
Control	1.85E+11	
S3X70-HF1200 only	7.59E+09	
+Coating Agent A	4.03E+09	
+Coating Agent B	4.13E+09	
+Coating Agent C	2.44E+10	

`

➤ With or without conformal coating applied, **S3X70-HF1200** had high insulation resistance.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Halogen content

Measurement Method

Ion Chromatography, Quartz combustion tube

Elements	Results	
F	Not detected*	
CI	Not detected	
Br	Not detected	
1	Not detected	

*Not detected: Detection limit <50ppm

➤ **S3X70-HF1200** has no addition of any of the halogens and is classified as ROL0 (Cl+Br+l+F = <500ppm according to IPC J-STD-004B and 004C,D).

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

General properties

ltem	Result	Test Method
Slump properties	0.3 mm pass	JIS Z 3284-3 150°C for 10 min.
Solder ball test	Category 3	JIS Z 3284-4
Tack time	≥ 72 hours	JIS Z 3284-3
Cu mirror test	Type L	IPC-TM-650 2.3.32
Cu plate corrosion test	No corrosion	IPC-TM-650 2.6.15
Insulation resistance test	≥ 1E+11 Ω	IPC-TM-650 2.6.3.7
Electrochemical migration test	No evidence of migration	IPC-TM-650 2.6.14.1

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide – Recommended print condition

1) Squeegee condition

1. Shape Flat

2. Material Metal or Urethane blade

3. Angle 50-60°

4. Print pressure Relatively low (40-60N)

5. Squeegee speed 20-80 mm/sec.

2) Stencil

1. Thickness 0.15-0.08 mm for 0.65-0.4 mm pitch pads

2. Fabrication method Laser or chemical etch

3. Stencil release speed 7.0-10.0 mm/sec.

4. Snap-off speed 0 mm

3) Usage condition

1.Temperature 23-26°C2. Humidity 40-60%RH

3. Air conditioning Direct air blowing on the stencil will dry the solder paste faster. Adjust the direction of

air blowing on the stencil using a shield, etc.

4) Usage Notes

1. Pin-in-Paste Flux residue may accumulate on the tip of connector pins. It is not recommended to

strike the ICT probe at the tip of the connector pins.

Caution: When handling solder paste, personal protective measures as advised by your Health and Safety department should always be adhered to.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide - Pot life & Shelf life

1. Pot life

- 1) Once paste has returned to ambient temperature it is fit for use.
- 2) Once the solder paste is opened, but not kneaded by a spatula nor a mixing machine
 - → Within the remaining shelf life of the product by storing it back in the refrigerator at 0-10°C.
- 3) Once the solder paste is opened and kneaded by a spatula or a mixing machine
 - → Within 1 week to 1 month by storing it back in the refrigerator at 0-10°C
- 4) Once the solder paste is opened, kneaded by a spatula and worked on the stencil with the squeegee blades.
 - → Within 24 hours

*NOTE: What are described in this guide do not necessarily mean to guarantee the performance/quality of the solder paste.

2. Shelf life (at 0 ~ 10°C)

Storage temperature	Package	Shelf life
0 ~ 10°C	Jar	6 months from manufacturing date
0 ~ 10°C	Cartridges	6 months from manufacturing date

Attention: "Storage temperature" is applicable upon receipt by customer – label information on product also relates to storage conditions of product upon receipt by customer.

* How to interpret the lot number:

of production batch: 1st batch
Date of production: 7th

Month of production: Jan Year of production: 2025

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide – Recommended reflow profile (Air atmosphere)

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide – Recommended reflow profile (N2 atmosphere)

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide - Supplemental information

